
NUMERICAL INVESTIGATION OF THE CHARACTERISTICS OF 

RADIANT HEAT TRANSFER IN A TURBINE GRID 

E. N. Bogomolov and V. I. Orlova UDC 621.438:536.24 

The Monte Carlo method is used to investigate the distribution of radiant heat 
fluxes in the interblade channel of a turbine grid and directionality diagram 
of the emitted radiation. 

In designing turbine blades, the high temperature level of the basic working body that 
is typical of modern gas-turbine motors means that it is necessary to take account of the ra- 
diative heat transfer in the grid, due mainly to the radiant heat flux originating from the 
combustion zone in the combustion chamber (the emission of the medium in the turbine itself 
may usually be neglected, since, as shown by calculations based on the known experimental data 
[i, 2], it is approximately an order of magnitude smaller than the emission of the burning 
gas). The influence of the radiant heat flux incident at the grid is found to be especially 
significant in the presence of film cooling of the blade surface, which is becoming steadily 
more widely used in gas turbines. Reduction in efficiency of blade cooling e = (T~ -- T~)/ 
(T~ -- T~) under the influence of the radiant heat flux may only be compensated by intensifi- 
cation of the internal convective cooling of the blade, whereas the use of film cooling is 
practically associated with attenuation of the convective heat transfer on account of redis- 
tribution of the coolant flow rates. According to heat balance, this reduction in cooling ef- 

ficiency is 

~0 : (1 --0conOEB-- 1--0o Fg., (1) 
1 - -O  F 

where 

EB = EB~[=G(ro--T%)I �9 (2) 

In the present work, the laws of radiant heat transfer are studied using the Monte Carlo 
method for the example of a parabolic grid, typical for the solar apparatus of gas turbines. 
Account is taken here of external radiation and the surface emission of the blades, while the 
emission of the medium in the grid is regarded as insignificant. 

Suppose that the convex and concave surfaces of the interblade channel in the grid are 

described by the equations 

Ys = As.~ + BJs ,  (3) 

yb--= AbX~-[- BbXbq- C b, (4) 

and the ordinate is directed along the front of the grid (Fig. i). Assume that, in the gen- 
eral case, the boundary of the interblade channel (including the outline of the inlet OG and 
the outlet EF) has intrinsic emission directed within the region OEFGO. To solve the problem 
of the distribution of radiant energy absorbed by the boundaries of the isolated region, the 
Monte Carlo method is used [3, 4], assuming that the boundaries OG and EF each consist of n 
sections and the boundaries OE and GF each of m sections; in unit time, any of these emit N 
portions of energy, propagating in the plane of the interblade-channel cross section over a 
rectilinear trajectory in the transparent medium. 
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Diagram of the grid. 

The direction of the initial beam carrying a given portion of energy with respect to the 
normal to the emitting surface at the point of exit of the beam is determined by selecting a 
random number R 6 belonging to a uniform distribution in the interval (0, i), according to the 
relation 

5 = (R~ - -  0,5) ~, (5 )  

while the angle 6 between the beam and the normal directed into the region OEFGO is measured 
from the normal. The angle between the abscissa and the beam is characterized by the rela- 
tions: m = 5 for the boundary OG, m = ~ + 6 for the boundary EF, ~ = ~/2 + m S + 6 for the 
boundary OE, ~ = --(~/2 -- mb -- 6) for the boundary GF; the angles between the abscissa and the 

tangent to the convex m S and concave mb surface of the interblade channel correspond to the 
exit points of the beam. When the beam is incident on the side surface of the interblade 
channel (OE or GF), the portion of energy is assumed to be absorbed if the chosen random num- 
ber R e ~ E. If R E > ~, absorption does not occur, and the beam is reflected diffusely or 
specularly. The type of reflection is established by selection of the random number R s, If 
R s < S, then specular reflection occurs; otherwise, the reflection is assumed to be diffuse, 
and the direction of the reflected beam is determined analogously to finding ~ for the emit- 
ted portion of energy. 

The solution of the problem reduces to tracing the path of motion of each portion of en- 
ergy right up to the instant of absorption by the side walls or of departure beyond the lim- 
its of the interblade channel (crossing the boundary OG or EF) and subsequent summation of 
the energy received by each section of the boundary of the given region. 

The basic geometric relations required to determine the parameters of the energy-bearing 
beams and the points at which they cross the boundaries are now given. In the general case, 
the beam equation is written in the form 

YB = x B t g ~  + CB' ( 6 )  

If the portion of energy begins its motion from boundary OG at the point with ordinate 
yl, then obviously C B = Yl. Simultaneous solution of Eqs. (4) and (6) shows that if 

Pb = ( tg  ~--Bb '2) @ CB--Cb>0 (7) 
\ 2A~ b Ab 

the beam crosses the convex surface; the abscissa of the intersection point for a beam arriv- 
ing from the direction of boundary OG is determined by the expression 

679 



tg a --  B b Y-Pb. (8) 
XBb -- 2Ab 

When 

0 < XBb< b, (9) 

where b i s  the gr id  width (Fig.  1) ,  the i n t e r s e c t i o n  po in t  ob ta ined  ( the po in t  of  inc idence  
of the beam) f a l l s  w i t h i n  the l i m i t s  of the  i n t e r b l a d e  channel .  

The c o n d i t i o n  of beam i n t e r s e c t i o n  wi th  the boundary EF corresponds  to the i n e q u a l i t y  

btgv~yBa~ btg ? + t - -% (i0) 

where y is the angle of installation of the profile; t, grid step; e2, thickness of the outlet 
edge; YB2 = b tan a + CB, ordinate of the intersection point. 

If Eqs. (9) and (i0) do not hold, then one of the intersection points of the beam with 
the concave boundary lies within the segment OE. For a beam arriving from the direction of 
boundary OG, the abscissa of this point is determined on the basis of Eqs. (3) and (6) by 
means of the expression 

t g a - - B s  r  CB 
XBs= 2As + 2As , As (ii) 

For the portion of energy moving from boundary EF, C B = Y2 -- b tan a, where y2 is the or- 
dinate of the point on EF at which the beam begins. When Eq. (7) holds, this beam will inter- 
sect the convex surface of the channel at the point with abscissa 

tgc~---Bb + VFbb (12) 
XBb -- 2A b 

which belongs to segment GF when Eq. (9) holds. The possibility of intersection of the beam 
with boundary 0G is determined by the condition 

O~ CB~t--e~. (13) 

If Eqs. (9) and (13) do not hold, then the beam is incident on the concave surface within 
the limits of the interblade channel, and the abscissa of the point of incidence is 

tg~--Bs ~ ( tga--Bs CB 
xBS=" 2A s 2As )24 As (14) 

If the portion of energy is emitted (reflected) by the concave surface, the constant in 
the beam equation is determined from the formula 

C. B = ASXBS-r BgxBS--- XBs tg a, (15) 

where xBS is the abscissa of the point of emission. If Eq. (7) holds, the beam intersects the 
convex surface, and the abscissa of the intersection point when ~ < ~/2 may expediently be de- 
termined from Eq. (8); but when a > ~/2 -- by Eq. (12). The condition of beam intersection 
with the boundary OG corresponds to Eq. (13), and the condition of intersection with boundary 
EF corresponds to Eq. (i0). If Eqs. (9), (I0), and (13) do not hold, the beam is incident on 
the concave surface (self-irradiation of the concave surface occurs) at the point with an ab- 
scissa given by Eq. (14) when a < 7/2, or by Eq. (ii) when ~ > 7/2. 

In energy emission (reflection) by a convex surface (at the point with abscissa XBb) 

C B = A ~  b + Bb~ b @ C b -  ~big ~. (16) 

If Eq. (13) holds, it means that the beam passes beyond the limits of the channel through 
boundary OG, and if Eq. (i0) holds, it leaves the channel through boundary EF. If these con- 
ditions are not satisfied, then the beam interacts with the concave surface at a point with 
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an abscissa given by Eq. (ii) if e >--~/2 or Eq. (14) if a <--v/2. The direction of the re- 
flected beam in specular reflection is determined from geometric considerations. 

If the incident beam is characterized by ~ # ~/2, then the expression for the angle of 
incidence (the angle between the beam and the tangent to the surface at the point of beam in- 
cidence) when the beam is incident on a convex surface (at a point with abscissa XBb) may be 
written in the form 

[ 2AbvBb+ B b -  tg ~ ] 
~ b =  arctg - -  '-~ - - - - - -  ' (17) 

1 + (2Ab.VBb + Bb) tg ~j  

and when the  beam i s  i n c i d e n t  on a concave  s u r f a c e  (a t  a p o i n t  w i t h  a b s c i s s a  xBS), in  the  form 

13:s = arctg [1 2A sxB___~s + B___!s-- tg __~ ] 
+ (2AsvBs + BS) tg ~J 

(18) 

when a = ~/2 

13b-- arctg 2A'~CBb-i- Bb, ' ; [3s= arctg k 2Asvss+ B-s (19)  

In accordance with Eqs. (17)-(19), the angle of inclination of the reflected beam in 
specular reflection from a convex surface is ~' = ~b -- Bb when $b < 0 and ~' = ~b + Bb -- v 

when 8b > 0; in the case of specular reflection from a concave surface, ~' = m S + B S + ~ when 

~S < 0, and ~' = ~S + 8S when 8 S > 0, while ~b = arctan(2AbXBb + Bb); ~S = arctan(2AsXBS + 

BS). 

The representation of the radiant energy density, taking account of its dependence on the 
direction, is now considered. 

In a plane formulation, the energy of a specific portion of radiation Aq emitted by an 
area bounded by the segment Al in the given plane may be expressed in the form 

a 
Aq = E m F  ( , )  --, N (20) 

where E is the total radiation density; F(~), directionality function of the radiation; and 
~/N = A~, plane angle corresponding to the portion of radiation. 

The function F(~) is written in the form of Fourier series 

2 Z 

i = l  i = l  

(21) 

----6. The assumption a o =  i/a, ai> l = O , b i ~ l = O  corresponds to the where, by definition, ~= 2 

condition of directional independence of the radiation density. When ai>0=O, bi=I/2, bi>~ =0 , 

Eq. (21) gives F(~) = (i/2)sin ~, which corresponds to the Lambert law (for plane radiation). 

An approximate function F(~) is constructed for the radiation flux leaving the interblade 
channel, on the basis of the scheme for twelve ordinates. Retaining three terms of the expan- 
sion, it is found that 

F ( , )  = ao + ai cos q~ + a~ cos 2 ,  + aa cos 3% (22) 

where 

1 6 

ao = - i ~  [ F, ( * ) +  2 .~  Fi (*) + F7 (*)]; (23) 
i = 2  

i 
as = 7 [F, (~) + V 3F2 (~) + Fa (~) - -  F5 (~) - -  V 3  Fs (*)+ F7 (*)]: b (24) 
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1 
~ - -  [F~ (~) + F~ (t0 y~ (I') o~ . . . . .  .,-~ (~) - -  F~ (~L:) Fs (~:)- Yv (q.) , (25) 

6 

] 

(26 )  

The values of the function are determined for each direction (sector) of any section of 

the given boundary as the sum of the energy in the i-th direction per unit plane angle re- 
ferred to the energy passing through the section in all possible directions 

F ~ ( , )  (EAq), 6 F~( , )  (Y.Aq)~ 12 Fv(*) (ZAq)7 12 
--, - -  , - ( 2 7 )  (1<i<7) ZAq Y[, ~/~q a 'Y'Aq 3I 

The number of the sector through which the given portion of energy passes corresponds to 

i' = 1 + (v/2 --~)~/6, rounded to an integer. Using Eq, (22), the directional properties of 

the turbine grid as a reflector of radiant energy may be investigated, and the directionality 
of the radiation may be taken into account in calculating the radiational interaction-of neigh- 
boring coronas. 

The quantity Al in Eq. (20) depends on the character of the boundary and the number of 

sections into which it is divided. For the j-th section of the side boundaries of the para- 

bolic channel, under the condition that j = 1 corresponds to the section adjacent to the or- 

dinate, the following expression may be written: 

'/( t " AZj= -4~ 2 A - - i 4 -  B / i + 4AB i 4- B 2 - F 1 -  
II1~ ~ , 177 " 

- -  2.4 - - -  ( i . 4 -B  | /  4A 2 . - 7 ~ - ( ]  - -  1) + 4 A B - - ( ] - - l ) 4 - B 2 + l +  
m ( 2 8 )  

/- ( b ) 2  b B 2 b 
~ -  m _m l -  

l, / 4A z ] 4- 4AB ] 4- -F1 4- 2A 14-B 
4-1n 

b [,+, ~//r4A2 (1--i) 4- 4AB b-----(I--1)4- m 
J 

An example of solving the given problem for a grid with the parameters t = 0.063 m, b = 

0.048 m, el = 0.0115 m, e2 = 0.0085 m, y = 53 ~ , A S = 20.4681 m -I, B S = 0.344327, A b = 38.441 
--1 

m , B b = --0.456023, and C b = 0.0515 m (Fig. I) is shown in Fig. 2, where the density of ra- 
diant fluxes is shown by curves plotted along the boundaries of the interblade channel arbi- 

t~:~ri]y chosen in the form of a rectangle. The radiation density is plotted perpendicular to 
the boundaries of the channel everywhere in the same scale. At the solid channel boundaries, 
curves of the absorbed-energy density -- arrows toward the boundary -- and emitted (resulting) 
energy -- arrows away from the boundary -- are shown. On the lines marking the inlet and outlet 
of the channel, the energy density arriving at the channel (curve outside the channel) or 
leaving it (curves inside the channel) is plotted. Lobe diagrams show the distribution of the 

energy leaving the interblade channel in directions in the half plane, estimated as the ratio 
of the energy transmitted in the given direction to the total energy transmitted through the 
given section of boundary; the segment length L corresponds to unity in the diagram. On the 
curves of the radiation flux density, the length L corresponds to 5.105 W/m 2. The continuous 

curves correspond to ~S = Eb = i, the dashed curves to ~S = ~b = 0.5, S S = S b = 0, and the 

dash-dot curves to gS = Zb = 0.5, S S = S b = i. The calculations were performed on an M-220 
computer for m = n = 5 and N = i0,000. The distribution of the energy incident on the blades 
from the direction of the inlet to the grid is shown in Fig. 2a; this distribution is found 
under the assumption that the incident-energy density is Ein = 5.105 W/m 2 and does not depend 
on the direction, while there is no intrinsic emission of the solid channel walls. Analogous 
data are shown in Fig. 2b for the case when the energy is incident from the direction of the 
outlet from the grid Eou t = 5'10 ~ W/m 2, under the condition that Ein and the intrinsic emis- 

sion of the solid channel walls are zero. It is evident from Figs. 2a, b that energy absorp- 
tion by the solid boundaries occurs mainly on sections close to the region of admission of the 
radiant flux. The transmissivity of the grid is smaller for Ein than for Eout; the degree of 
specularity of th~ blade surfaces forming the grid significantly influences the directionality 

of the energy transmitted and reflected by the grid. 
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Fig. 2, Radiant-energy distribution over the interblade-channel 
boundary: a, b) energy directed into the grid through the inlet and 
outlet cross sections, respectively; c) energy emitted by the walls 
of the grid blades. 
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The distribution of the density of the resulting radiant flux of the walls E = sooT~ -- 
Eab s and the radiant energy leaving the grid are shown in Fig. 2c for Ein = Eou t = 0 and T B = 
1223~ In this case the directionality diagrams are found to be practically the same for 
all the given conditions. 

The given data indicate the considerable nonuniformity of the distribution of radiant 
heat fluxes in a turbine grid, which may exert a significant influence on the thermal and 
thermostress state of the blades of high-temperature gas turbines. Thus, taking into account 
that in modern gas-turbine motors the radiation density of the combustion chamber in the com- 
bustion of kerosene is at a level of 2.5.105 W/m 2, the density of the radiant heat flux ab- 
sorbed by the blade with a blade-surface emissivity of 0.5 is approximately 0.5.105-1.105 W/m 2 
in the region of the inlet edge, according to Figs. 2a, c; for typical conditions of the first 
stage of gas-turbine-motor turbines, this gives E B = 0.05-0.1, and hence when 0conv = 0.5, the 
cooling efficiency of the inlet edge is reduced, as a result of radiant heating, by 0.025- 
0.05. 

NOTATION 

T, temperature; e, cooling efficiency of blade (subscript 0 denotes the value when E B = 
0); ~G' heat-transfer coefficient from the direction of the gas; ~, B, Y, 6, ~, 4, angles; E, 
radiant heat-flux density (subscript B denotes that absorbed by the blade); E, emissivity; S, 
degree of specularity; R, random number; x, y, coordinates; t, grid step; e, thickness of the 
blade edge; A, B, C, coefficients of the parabolas describing the blade profile, constants; 
ai, bi, coefficients; F(~), directionality function; P, parameter; i, j, number of section, 
direction. Subscripts: A, air; G, gas; conv, convective; F, film; B, blade, beam; S, saddle 
(concave surface); b, back edge (convex surface); in, i, inlet to the grid; out, 2, outlet 
from the grid; abs, absorbed. 
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